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ABSTRACT

Currently, the representation learning of a graph has been proved to be a significant technique to extract
graph structured data features. In recent years, many graph representation learning (GRL) algorithms,
such as Laplacian Eigenmaps (LE), Node2vec and graph convolutional networks (GCN), have been reported
and have achieved great success on node classification tasks. The most representative GCN fuses the fea-
ture information and structure information of data, which aims to generalize convolutional neural net-
works (CNN) to learn data features with arbitrary structure. However, how to exactly express the struc-
ture information of data is still an enormous challenge. In this paper, we utilize hypergraph p-Laplacian
to preserve the local geometry of samples and then propose an effective variant of GCN, i.e. hypergraph
p-Laplacian graph convolutional networks (HpLapGCN). Since hypergraph p-Laplacian is a generalization
of the graph Laplacian, HpLapGCN model shows great potential to learn more representative data fea-
tures. In particular, we simplify and deduce a one-order approximation of spectral hypergraph p-Laplacian
convolutions. Thus, we can get a more efficient layer-wise aggregate rule. Extensive experiment results
on the Citeseer and Cora datasets prove that our proposed model achieves better performance compare

with GCN and p-Laplacian GCN (pLapGCN).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the richness and expansion of the current social life,
the structure presented by the data [1,2] has become more and
more complicated. How to effectively manage and apply these
complex structured data [3,4] has become a serious challenge for
researchers. Graphs are the frequently used type of data structure
that can describe the intricate connections between things. Many
tasks [5] in the real world can be described as graph problems, so
more and more emerging technology fields [6,7] begin to represent
complex data by means of graph models. For example, in the field
of biotechnology, graph models are used to describe the internal
structure of protein [8]. In the field of social networking, graph
structures are used to describe the relationships between a large
number of people or groups [9]. At present, plenty of methods
for GRL have been widely used to extract the data features with
the complex structure [10,11], such as natural language processing
[12-14], image processing [15-17] and so on [18,19].

In the past few years, many traditional graph embedding (net-
work embedding) models including LE [20], Node2vec [21], CANE
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[22], SDNE [23] have made a great development. Recently, the GRL
models based on spectral theory have drawn a widely public at-
tention [24-26], i.e. GCN. More optimized GCN models have been
proposed and are categorized as spectral convolution approaches
[27-29] and spatial convolution approaches [30-32].

The spectral convolution models [27-29] make the convolution
transformation in the Fourier domain. Kipf and Welling [27] used a
convolutional network to fuse the graph Laplacian-based structure
information and feature information of data, which aimed to ef-
fectively generalize convolutional neural networks [33,34] to learn
the data features that have arbitrary graph structures. Yadati et al.
[28] dealt with the problem of extending graph convolutional net-
works to a hypergraph, not to a standard graph by considering the
hypergraph Laplacian-based structure information. Zhuang and Ma
[29] proposed a dual graph convolutional network to consider both
the local consistency and global consistency of a graph.

The spatial convolution models [30-32] directly make a convo-
lution operation on the graphs. Atwood and Towsley [30] captured
the diffusion-based representations from graph structured data
by introducing the diffusion convolution, which aimed to extend
convolutional neural networks [35] to graph structured data.
Velickovic et al. [31] distributed a different weight for the neigh-
borhoods of each node by using the attention mechanism, which
can get the hidden representations of each node from the graphs.
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Niepert [32] proposed a PATCHY-SAN (Select-Assemble-Normalize)
frame to make a preprocessing process from graph to vector map-
ping, and then made the corresponding convolution operations.

However, the geodesic function of the graph Laplacian null
space is a constant, which results in incorrectly predicting samples
beyond the scope of the training datasets [36,37]. Thus, GCN
cannot get the detailed manifold structure information of data
properly.

In this paper, we propose a hypergraph p-Laplacian graph con-
volutional network (HpLapGCN) for semi-supervised classification.
First of all, the hypergraph p-Laplacian [38-40] has provided the
convincing theoretical evidence to better preserve the local geo-
metric structure of data. Thus, the combinant of the Hypergraph
and p-Laplacian is used, i.e. Hypergraph p-Laplacian matrix. In
the next place, we apply the hypergraph p-Laplacian to the spec-
tral graph convolutions, and then we introduce a different def-
inition, i.e. spectral hypergraph p-Laplacian convolutions. Finally,
we get a more efficient layer-wise aggregation rule by the deriva-
tion and simplification of the one-order approximation for spectral
graph convolutions. A deep HpLapGCN can be built through this
layer-wise aggregation rule. We conduct substantial experiments
on public datasets including Citeseer and Cora to demonstrate the
performance of the HpLapGCN. From the experimental data, we
can see that, the HpLapGCN outperforms the GCN and pLapGCN.

The main contributions of this work are two-fold:

1) This paper proposes the hypergraph p-Laplacian to pre-
serve the geometry of the probability distribution, and then
gets a more efficient convolution formulation by the deriva-
tion and simplification of the one-order spectral hypergraph
p-Laplacian convolutions.

2) This paper proposes a hypergraph p-Laplacian graph con-
volutional network to improve the semi-supervised classi-
fication performance. The experimental results validate the
effectiveness of their method.

The rest of this paper is organized as follows. Section 2 briefly
describes the related works on the hypergraph p-Laplacian theory
and the basic GCN model. Section 3 and Section 4 detail the pro-
posed HpLapGCN framework and motivation. Section 5 describes
the experimental results of HpLapGCN. And finally Section 6 is the
conclusion.

2. Related works

Our proposed model is motivated by the hypergraph p-
Laplacian theory and the basic GCN model. In this section, we
briefly describes the related works of the HpLapGCN.

2.1. Hypergraph p-Laplacian theory

In the traditional graph theory, we often assume that there
are only pairwise relationships between the different objects.
These pairwise relationships can be represented through a simple
graph. In a simple graph, a vertex represents an object and the
relationships between two objects are represented by an edge
of the simple graph. However, in the real world, it is difficult to
describe the complex relationships between the different objects
by only using a simple graph [41]. The main difference between a
hypergraph and a simple graph is the different numbers of vertex
on the edge. The edges of a simple graph have only two vertices.
In a hypergraph, each edge can connect N vertices (N> 2). In order
to distinguish from the edges of the simple graph, the edges of
the hypergraph are called hyperedges. Fig. 1 shows the difference
between a hypergraph and a simple graph.

In a hypergraph G = (V,E,W), V is a finite set of vertices and
E, i.e. a family of subsets of V, are the sets of hyperedges. Each

hyperedge ecE is given a nonnegative weight w(e). The structure
of the hypergraph can be described by a |V| x |E| dimensional cor-
relation matrix H. In addition, if a vertex v is located in a hyper-
edge e, the h(v, e) is assigned a value of one, else the h(v, e) is
given a value of zero. For each vertex veV, its degree matrix is
defined as the following expression:

d(v) =) w(e)h(v,e) (1)

ecE

For each hyperedge e<E, its degree matrix are denoted as the
numbers of total vertices on the hyperedges, i.e.

8(e) =Y h(v.e) (2)

veV

In addition, the Dy is the diagonal degree matrix of each vertex.
The D, denotes the diagonal matrices including the degree ma-
trix of each hyperedge. W are the diagonal matrix of hyperedge
weights. In the construction process of hypergraph, we first calcu-
late the weight W* of simple graph by the k-nearest neighbor with
the Euclidean distance. And then we regard each node and its k-
nearest neighbor nodes as the nodes of a hyperedge. Finally, we
can get the weight W of hypergraph.

Thus, we can get the definition of the adjacency matrix of hy-
pergraph, i.e.

wh = HWHT — Dy (3)

At present, the learning methods of hypergraph can be mainly
divided into three categories. Specially, a hypergraph is built from
data. The first methods, including clique expansion [42], star
expansion [42], Rodriguez’s Laplacian [43] and clique averaging
[44], are to construct a simple graph based on the hypergraph,
and then use the spectral clustering methods based on the simple
graph to segment the hypergraph. The second type of methods are
a tensor-based hypergraph learning method [45,46]. In this type of
methods, the hypergraph structure is described by a tensor. Then
the hypergraph is segmented by using the joint clustering meth-
ods. The third type of methods are to generalize a simple graph
Laplacian to a hypergraph Laplacian, such as Zhou’s normalized
Laplacian [47] and Bolla Laplacian [48]. In [47], the normalized
hypergraph Laplacian is proposed and is denoted as:

[ = Iy — D, > HWD; 'H'D,,? 4
N 1% e 1% (4)

In addition, the D, (edge matrix) is equal to 2Iy in a sim-
ple graph. Then, the standard graph Laplacian is defined as the
following form:
i=X(1—p;twhp;?t

= j(N — Py v ) (5)
p-Laplacian L, (high-order) is a generation of Laplacian (one-
order). Graph p-Laplacian gets tighter isoperimetric inequality, thus
the upper and lower bounds on the second eigenvalue approxi-
mates the optimal Cheeger cut value well [49]. In addition, Liu
et al. [36] have demonstrated the differences of Laplacian and p-
Laplacian. That is to say, it has been proved that the L, can ex-
trapolate smoothly to unseen data that have the geodesic distance
[36], i.e. it has richer extrapolation capability. The detailed math
theoretical analysis also can found in [36]. In addition, the p is a
fundamental parameter of L. Currently, Luo et al. [50] utilized the
p-Laplacian to solve the clustering problem. Zhou and Scholkopf
[51] built a p-Laplacian based discrete regularization framework for
the classification problem.

Recently, Ma et al. [38] generalized the hypergraph Laplacian to
hypergraph p-Laplacian HLp, and then utilized the hypergraph p-
Laplacian regularization to express the local geometry of data for
the remote sensing image classification. The computational pro-
cess of HL, are divided into two parts, ie. firstly, it constructs
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Fig. 1. The difference between a hypergraph and a simple graph. Left: a simple graph: each edge of a simple graph have only two vertices. Right: a hypergraph. In a

hypergraph, each edge can connect N vertices (N> 2).

the hypergraph Laplacian HL by means of W" (i.e. HL = Dh — wh,
=3 Wh), then it generalizes the HL to HL,. The detailed

process can be found in [38].

2.2. Graph convolutional networks

Defferrard et al. [24] proposed an optimized spectral graph con-
volution formula, which is defined as the convolution of signal
X € RN*C (C are the numbers of the dimensional for each sample)
with a filter gy that has F features maps, i.e.

k

g (L) +X =Y GT(DX (6)
k=0

Here, 6 is a filter coefficient matrix. T(X) is a Chebyshev
polynomial sequence with recursive form, ie. To(X) =1,Ty (X)
X, T, (X) = 2XT,_1(X) — T,_»(X). L is rescaled through L = AL

max

In. AL oy is the largest eigenvalue of the graph Laplacian L. In this
definition, Defferrard et al. [24] used the normalized Laplacian
matrix, i.e. L=1Iy —D*%AD*%, Dji = 3;A;j. The adjacency matrix
A is a matrix that represent the adjacent relationships between
the samples. Iy represents the identity matrix. Defferrard et al.
[24] used the K-order network neighborhood on each convolution
layer.

To build a linear model, Kipf et al. [27] only used the node’s
direct neighborhood on each iteration, i.e. K= 1. Finally, they
proposed an efficient layer-wise definition, i.e.

A = o (5-%/?5-%F1<L>W<L>) (7)

Here, H+1D is the sample feature matrix of each layer,
H® =X. WO is trainable parameters matrix of each layer.
Kipf et al. [27] used the nonlinear activation function RELU, i.e.
f(x) = max(0, x). Z:A—HN represents the sample’s adjacency
relationships including self-connections. Eii:Zinj. On each
aggregation iteration process, each sample can get the sample
structure information with the node’s direct neighborhood. Each
convolution is the fusion process of the structure information and
feature information.

3. Motivation

Inspired by the spectral graph convolutions, we introduce a
novel definition by combining the hypergraph p-Laplacian and

the spectral convolutions on graphs, i.e. spectral hypergraph p-
Laplacian convolutions. Moreover, we get a different layer-wise ag-
gregate rule by optimizing the one-order polynomial of spectral
hypergraph p-Laplacian convolutions. Specifically, the definition of
spectral hypergraph p-Laplacian convolutions is showed first. The
one-order approximation of hypergraph p-Laplacian convolutions is
given then. In this part, we explain the motivation of HpLapGCN
model and introduce the derivation and optimization process of
layer-wise aggregate rule.

3.1. Spectral hypergraph p-Laplacian convolutions

Because of the poor null space of the Laplacian matrix [36,52],
i.e. the manifold structure information of Laplacian is not rich,
and then the extracted sample features of GCN are not represen-
tative. To get the richer sample features, we use the hypergraph
p-Laplacian matrix to preserve the manifold structure of the data.
Then, we apply the hypergraph p-Laplacian to spectral graph con-
volutions. Finally, we can get different spectral convolutions on the
graph, i.e. spectral hypergraph p-Laplacian convolutions.

k

o (HLy) « X = 3" 0T (HL,)X (8)
k=0
Here, ﬁfp = HLp—IN Amax denotes the largest eigenvalue

in the hypergraph p Laplacian. In addition, To (HLp) =1y, T (HLp) =
HLp,Tk(HLp) _2HLka 1(HLI,)—T,< Z(HLp) In this paper, we
construct the HL, using the method described in [38].

3.2. One-order approximation of hypergraph p-Laplacian convolutions

To build a linear model and reduce the calculation of the model,
we also use the one-order approximation of spectral hypergraph p-
Laplacian convolutions, i.e. K = 1. Thus, the above formula can be
simplified, which is named HpLapGCN-1, i.e.

g9 (HLp) » X = 0oX + 01( HL, — IN)X 9)

)\max

It has two filter parameters 6 and 6. The two different filter
parameters can be used on each convolution layer. Specially, we
constraint the filter parameters to further reduce model’s convo-
lution operations and avoid the overfitting problem. Thus we can
get an optimal formula, which is named HpLapGCN, i.e. layer-wise
aggregate rule.

Z=gy(HLy) +X = 9( HL, —IN>X (10)

Amax
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Fig. 2. Framework of the HpLapGCN model for semi-supervised classification.

Here, X is a matrix that represents the original data and 0 ¢
REXF, jm HLp — Iy is a symmetric matrix, which is the structure
information of samples. Z is the output of each convolution layer,
which represents the node’s transformed sample features.

The above formula can also be expressed as the following

expression, i.e.

AU — & [<A2 HL, - IN)I:I(L)W(L)] (11)

max

4. Hypergraph p-Laplacian graph convolutional networks

In this part, we propose the hypergraph p-Laplacian graph con-
volutional networks (HpLapGCN) based on the new layer-wise ag-
gregate rule. Specifically, we detailed describe the framework of a
two-layer HpLapGCN. Fig. 2 shows the framework of a two-layer
HpLapGCN for semi-supervised classification.

4.1. The first convolution layer of HpLapGCN

In this paper, we use a two-layer HpLapGCN to demonstrate the
performance of the model. Firstly, we need to construct the struc-
ture information of the samples, i.e. B= ﬁHLp — Iy. Then, we can
get the first convolution layer of HpLapGCN, i.e.

A® = RELU (BHOW©) (12)

W© are the weight parameters in the first layer. H( is the
output matrix in the first convolution layer. In the first layer, it can
extract the first layer’'s sample features by fusing the hypergraph
p-Laplacian structure information and original feature information.

4.2. The second convolution layer of HpLapGCN

The second convolution layer has a similar process. We take
the output of last layer as the second layer’s input. Then, the
expression of the second layer’s network is as follows, i.e.

H® — BgOW® (13)

W@ are the second layer's weight parameters. H® is the
output of the final layer. In this layer, the structure information is
embedded in the first layer’s sample features.

4.3. The classification layer of HpLapGCN

After two convolutional layers, we put the final sample features
into the classifier. Currently, Softmax is a commonly used classi-
fier in deep learning. The Softmax classifier generalizes Logistic re-
gression to multi-class classification. The Softmax function can be
defined as

eZi
f(ZJ) - Z;L] eZi
It can convert the sample features of each class to the probabil-
ity that belong to each class by the Softmax function. Z is the final
extracted sample features, i.e. H(2), Moreover, we use cross entropy
loss function to update training parameters.

C=-) ylogZz (15)
k

(14)

Here, y, represents the true label information. Zy is the output
of the Softmax function. During the training process of HpLapGCN,
our proposed model will stop training model until the cross en-
tropy loss value C of validation set are stable. In addition, we only
use a part of true label information y, during this process. The
model can get the best parameters by reducing the value of the
loss function.

5. Experiments

In this section, we utilize extensive public datasets including
Citeseer [53] and Cora [54] to test our proposed HpLapGCN for
semi-supervised classification. In the first place, we give a brief
description of the Citeseer and Cora datasets. In the next place,
we introduce the parameters setting in the experiment. Finally, we
show the experiment results of HpLapGCN.

5.1. Experiment datasets

The Citeseer database [53] contains 3327 scientific books. All
scientific publications are composed of 3703 different words,
which express the existence or absence of a corresponding word
through one or zero. The total dataset is divided into six categories,
such as Agents, Al, DB, IR, ML and HCI. All books contain 4732
citation relationships.
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Fig. 3. Classification accuracy for all class of Citeseer database.

The Cora dataset [54] consists of totally 2708 publica-
tions, which are collected from seven classes including case-
based, genetic-algorithms, neural-networks, probabilistic-methods,
reinforcement-learning, rule-learning and theory. Each publication
has 1433 different words. The dataset is divided into 5429 citation
links.

5.2. Parameters setting

In the process of the experiment, we select 500 samples to
form validation set, 1000 samples as testing set and the remaining
samples are training set. Moreover, the validation set and testing
set are all labeled data. In the training set, we random choose a
certain percentage samples including 20%, 30%, 40%, 50%, 60% as
labeled data, the rest training set as unlabeled data.

The maximum model training iteration numbers of HpLapGCN
up to 200 by using the Adam [55] optimization method with a
learning ration of 0.01. We will stop updating model parameters if
the cross entropy loss value of validation set remain unchanged for
consecutive ten times. To increase the generalization ability of our
proposed model, we use the L2 regularization with the coefficient
of 5 x 104 and Xavier [56] weight initialization method. Other pa-
rameters are as follows: Citeseer and Cora: 0.5 (dropout rate) and
32 (hidden neurons).

5.3. Experiment results

In this section, we compare the proposed HpLapGCN model
with the GCN and pLapGCN, In addition, the pLapGCN is our
previous works. In this work, we proposed a p-Laplacian graph
convolutional networks (pLapGCN) for citation network classifica-
tion by only utilizing the p-Laplacian to express the local structure
information of simple graph structured data, not a hypergraph
structured data. In each figure, the x-axis represents the label rate
of training data. The y-axis is the total classification accuracy of
each database in Figs. 3 and 4. Fig. 5 shows the classification accu-
racy of Citeseer dataset on each category including Agents, Al, DB,
IR, ML and HCI. For Cora dataset, the classification accuracy results
of three models on each class (case-based, genetic-algorithms,
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Fig. 4. Classification accuracy for all class of Cora database.

Table 1

Comparison of the different algorithms.
Method Citeseer (120) Cora(140)
ManiReg 60.1 59.5
SemiEmb 59.6 59
Chebyshev(K = 2) 53.6 49.8
Chebyshev(K = 3) 53.7 50.5
MLP 46.5 55.1
HpLapGCN 62.5 59.8

neural-networks, probabilistic-methods, reinforcement-learning,
rule-learning and theory) are shown in Fig. 6.

As shown in Fig. 3, we can see that, the HpLapGCN with p=2.2
achieves the best performance compared to other models. In ad-
dition, with the label rate growing up, the classification accuracy
of models also are on the increase. Fig. 5 reveals that under most
circumstances, our proposed model outperforms other methods in
the performance of each class.

Fig. 4 illustrates the classification accuracy of all categories in
Cora database. From Fig. 4, we can observe that the HpLapGCN
performs better than GCN and pLapGCN when p=1.7. For the most
part, we can find that our proposed method also obtains higher
recognition results from Fig. 6.

From the experiment results of Figs. 3 and 4, it suggests that
HpLapGCN can extract the richer data features to increase the clas-
sification accuracy because it fuses the hypergraph p-Laplacian-
based structure information, i,e, hypergraph p-Laplacian has the
superiority to express the manifold structure of data compare with
p-Laplacian and Laplacian. In addition, it also proves that the ef-
fectiveness of optimization method that our proposed, i.e. from
HpLapGCN-1 to HpLapGCN.

To show the effectiveness of our proposed HpLapGCN model,
we further compare HpLapGCN with other semi-supervised learn-
ing algorithms including manifold regularization (ManiReg) [57],
semi-supervised embedding (SemiEmb) [58], Chebyshev (K =2)
[24], Chebyshev (K = 3) [24], multi-layer perceptron (MLP) [27].
Report numbers represent the mean classification accuracy of one
hundred runs randomly in percent. From Table 1, we can see that
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Fig. 6. Classification accuracy for each class of Cora database, including Theory, Case-based, Genetic-algorithms, Neural-networks, Probabilistic-methods, Reinforcement-
learning, Rule-learning. Each subfigure corresponds on single class.
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HpLapGCN achieves the better classification performance. Those
experiment results also demonstrate that hypergraph p-Laplacian
can better express the space manifold structure of the data.

6. Conclusion

In the past few years, many ML methods have been success-
ful applied to the feature extraction of the complex space struc-
tured data. However, how to preserve the manifold structure of
data and then extract the abundant local structure information is
a vital problem. To exactly express the geometry structure of data,
in this paper, we exploit the hypergraph p-Laplacian matrix to ex-
press the space manifold structure of the data. Then we propose
a new expression method of structure information by optimizing
the hypergraph p-Laplacian-based spectral graph convolutions. Fi-
nally, we propose the HpLapGCN model based on the optimal one-
order polynomial in the hypergraph p-Laplacian. Hypergraph full
considers the many pairwise relationships of data, thus HpLapGCN
model can learn richer data features by integrating the feature in-
formation with the hypergraph p-Laplacian-based structure infor-
mation. Extensive experimental results demonstrate the proposed
HpLapGCN gets a higher classification performance.
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