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Currently, the representation learning of a graph has been proved to be a significant technique to extract 

graph structured data features. In recent years, many graph representation learning (GRL) algorithms, 

such as Laplacian Eigenmaps (LE), Node2vec and graph convolutional networks (GCN), have been reported 

and have achieved great success on node classification tasks. The most representative GCN fuses the fea- 

ture information and structure information of data, which aims to generalize convolutional neural net- 

works (CNN) to learn data features with arbitrary structure. However, how to exactly express the struc- 

ture information of data is still an enormous challenge. In this paper, we utilize hypergraph p -Laplacian 

to preserve the local geometry of samples and then propose an effective variant of GCN, i.e. hypergraph 

p -Laplacian graph convolutional networks (HpLapGCN). Since hypergraph p -Laplacian is a generalization 

of the graph Laplacian, HpLapGCN model shows great potential to learn more representative data fea- 

tures. In particular, we simplify and deduce a one-order approximation of spectral hypergraph p -Laplacian 

convolutions. Thus, we can get a more efficient layer-wise aggregate rule. Extensive experiment results 

on the Citeseer and Cora datasets prove that our proposed model achieves better performance compare 

with GCN and p -Laplacian GCN (pLapGCN). 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the richness and expansion of the current social life,

the structure presented by the data [1,2] has become more and

more complicated. How to effectively manage and apply these

complex structured data [3,4] has become a serious challenge for

researchers. Graphs are the frequently used type of data structure

that can describe the intricate connections between things. Many

tasks [5] in the real world can be described as graph problems, so

more and more emerging technology fields [6,7] begin to represent

complex data by means of graph models. For example, in the field

of biotechnology, graph models are used to describe the internal

structure of protein [8] . In the field of social networking, graph

structures are used to describe the relationships between a large

number of people or groups [9] . At present, plenty of methods

for GRL have been widely used to extract the data features with

the complex structure [10,11] , such as natural language processing

[12–14] , image processing [15–17] and so on [18,19] . 

In the past few years, many traditional graph embedding (net-

work embedding) models including LE [20] , Node2vec [21] , CANE
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22] , SDNE [23] have made a great development. Recently, the GRL

odels based on spectral theory have drawn a widely public at-

ention [24–26] , i.e. GCN. More optimized GCN models have been

roposed and are categorized as spectral convolution approaches

27–29] and spatial convolution approaches [30–32] . 

The spectral convolution models [27–29] make the convolution

ransformation in the Fourier domain. Kipf and Welling [27] used a

onvolutional network to fuse the graph Laplacian-based structure

nformation and feature information of data, which aimed to ef-

ectively generalize convolutional neural networks [33,34] to learn

he data features that have arbitrary graph structures. Yadati et al.

28] dealt with the problem of extending graph convolutional net-

orks to a hypergraph, not to a standard graph by considering the

ypergraph Laplacian-based structure information. Zhuang and Ma

29] proposed a dual graph convolutional network to consider both

he local consistency and global consistency of a graph. 

The spatial convolution models [30–32] directly make a convo-

ution operation on the graphs. Atwood and Towsley [30] captured

he diffusion-based representations from graph structured data

y introducing the diffusion convolution, which aimed to extend

onvolutional neural networks [35] to graph structured data.

eli ̌ckovi ́c et al. [31] distributed a different weight for the neigh-

orhoods of each node by using the attention mechanism, which

an get the hidden representations of each node from the graphs.

https://doi.org/10.1016/j.neucom.2019.06.068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.068&domain=pdf
mailto:liuwf@upc.edu.cn
https://doi.org/10.1016/j.neucom.2019.06.068
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iepert [32] proposed a PATCHY-SAN (Select-Assemble-Normalize)

rame to make a preprocessing process from graph to vector map-

ing, and then made the corresponding convolution operations. 

However, the geodesic function of the graph Laplacian null

pace is a constant, which results in incorrectly predicting samples

eyond the scope of the training datasets [36,37] . Thus, GCN

annot get the detailed manifold structure information of data

roperly. 

In this paper, we propose a hypergraph p -Laplacian graph con-

olutional network (HpLapGCN) for semi-supervised classification.

irst of all, the hypergraph p -Laplacian [38–40] has provided the

onvincing theoretical evidence to better preserve the local geo-

etric structure of data. Thus, the combinant of the Hypergraph

nd p -Laplacian is used, i.e. Hypergraph p -Laplacian matrix. In

he next place, we apply the hypergraph p -Laplacian to the spec-

ral graph convolutions, and then we introduce a different def-

nition, i.e. spectral hypergraph p -Laplacian convolutions. Finally,

e get a more efficient layer-wise aggregation rule by the deriva-

ion and simplification of the one-order approximation for spectral

raph convolutions. A deep HpLapGCN can be built through this

ayer-wise aggregation rule. We conduct substantial experiments

n public datasets including Citeseer and Cora to demonstrate the

erformance of the HpLapGCN. From the experimental data, we

an see that, the HpLapGCN outperforms the GCN and pLapGCN. 

The main contributions of this work are two-fold: 

1) This paper proposes the hypergraph p-Laplacian to pre-

serve the geometry of the probability distribution, and then

gets a more efficient convolution formulation by the deriva-

tion and simplification of the one-order spectral hypergraph

p-Laplacian convolutions. 

2) This paper proposes a hypergraph p-Laplacian graph con-

volutional network to improve the semi-supervised classi-

fication performance. The experimental results validate the

effectiveness of their method. 

The rest of this paper is organized as follows. Section 2 briefly

escribes the related works on the hypergraph p -Laplacian theory

nd the basic GCN model. Section 3 and Section 4 detail the pro-

osed HpLapGCN framework and motivation. Section 5 describes

he experimental results of HpLapGCN. And finally Section 6 is the

onclusion. 

. Related works 

Our proposed model is motivated by the hypergraph p -

aplacian theory and the basic GCN model. In this section, we

riefly describes the related works of the HpLapGCN. 

.1. Hypergraph p -Laplacian theory 

In the traditional graph theory, we often assume that there

re only pairwise relationships between the different objects.

hese pairwise relationships can be represented through a simple

raph. In a simple graph, a vertex represents an object and the

elationships between two objects are represented by an edge

f the simple graph. However, in the real world, it is difficult to

escribe the complex relationships between the different objects

y only using a simple graph [41] . The main difference between a

ypergraph and a simple graph is the different numbers of vertex

n the edge. The edges of a simple graph have only two vertices.

n a hypergraph, each edge can connect N vertices ( N ≥ 2). In order

o distinguish from the edges of the simple graph, the edges of

he hypergraph are called hyperedges. Fig. 1 shows the difference

etween a hypergraph and a simple graph. 

In a hypergraph G = (V, E, W ) , V is a finite set of vertices and

 , i.e. a family of subsets of V, are the sets of hyperedges. Each
yperedge e ∈ E is given a nonnegative weight w ( e ). The structure

f the hypergraph can be described by a | V | × | E | dimensional cor-

elation matrix H . In addition, if a vertex v is located in a hyper-

dge e , the h ( v, e ) is assigned a value of one, else the h ( v, e ) is

iven a value of zero. For each vertex v ∈ V , its degree matrix is

efined as the following expression: 

(v ) = 

∑ 

e ∈ E 
w (e ) h (v , e ) (1)

For each hyperedge e ∈ E , its degree matrix are denoted as the

umbers of total vertices on the hyperedges, i.e. 

(e ) = 

∑ 

v ∈ V 
h (v , e ) (2)

In addition, the D V is the diagonal degree matrix of each vertex.

he D e denotes the diagonal matrices including the degree ma-

rix of each hyperedge. W are the diagonal matrix of hyperedge

eights. In the construction process of hypergraph, we first calcu-

ate the weight W 

s of simple graph by the k -nearest neighbor with

he Euclidean distance. And then we regard each node and its k -

earest neighbor nodes as the nodes of a hyperedge. Finally, we

an get the weight W of hypergraph. 

Thus, we can get the definition of the adjacency matrix of hy-

ergraph, i.e. 

 

h = H W H 

T − D V (3)

At present, the learning methods of hypergraph can be mainly

ivided into three categories. Specially, a hypergraph is built from

ata. The first methods, including clique expansion [42] , star

xpansion [42] , Rodriguez’s Laplacian [43] and clique averaging

44] , are to construct a simple graph based on the hypergraph,

nd then use the spectral clustering methods based on the simple

raph to segment the hypergraph. The second type of methods are

 tensor-based hypergraph learning method [45,46] . In this type of

ethods, the hypergraph structure is described by a tensor. Then

he hypergraph is segmented by using the joint clustering meth-

ds. The third type of methods are to generalize a simple graph

aplacian to a hypergraph Laplacian, such as Zhou’s normalized

aplacian [47] and Bolla Laplacian [48] . In [47] , the normalized

ypergraph Laplacian is proposed and is denoted as: 

 

nh = I N − D 

− 1 
2 

V 
H W D 

−1 
e H 

T D 

− 1 
2 

V 
(4)

In addition, the D e (edge matrix) is equal to 2 I N in a sim-

le graph. Then, the standard graph Laplacian is defined as the

ollowing form: 

¯
 = 

1 

2 

(
I N − D 

− 1 
2 

V 
W 

h D 

− 1 
2 

V 

)
(5) 

p -Laplacian L p (high-order) is a generation of Laplacian (one-

rder). Graph p-Laplacian gets tighter isoperimetric inequality, thus

he upper and lower bounds on the second eigenvalue approxi-

ates the optimal Cheeger cut value well [49] . In addition, Liu

t al. [36] have demonstrated the differences of Laplacian and p -

aplacian. That is to say, it has been proved that the L p can ex-

rapolate smoothly to unseen data that have the geodesic distance

36] , i.e. it has richer extrapolation capability. The detailed math

heoretical analysis also can found in [36] . In addition, the p is a

undamental parameter of L p . Currently, Luo et al. [50] utilized the

 -Laplacian to solve the clustering problem. Zhou and Scholkopf

51] built a p -Laplacian based discrete regularization framework for

he classification problem. 

Recently, Ma et al. [38] generalized the hypergraph Laplacian to

ypergraph p -Laplacian HL p , and then utilized the hypergraph p -

aplacian regularization to express the local geometry of data for

he remote sensing image classification. The computational pro-

ess of HL p are divided into two parts, i.e. firstly, it constructs
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Fig. 1. The difference between a hypergraph and a simple graph. Left: a simple graph: each edge of a simple graph have only two vertices. Right: a hypergraph. In a 

hypergraph, each edge can connect N vertices ( N ≥ 2). 
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the hypergraph Laplacian HL by means of W 

h (i.e. HL = D 

h − W 

h ,

D 

h 
ii 

= 

∑ 

j W 

h 
i j 

), then it generalizes the HL to HL p . The detailed

process can be found in [38] . 

2.2. Graph convolutional networks 

Defferrard et al. [24] proposed an optimized spectral graph con-

volution formula, which is defined as the convolution of signal

X ∈ R 

N ×C (C are the numbers of the dimensional for each sample)

with a filter g θ that has F features maps, i.e. 

g θ (L ) � X = 

k ∑ 

k =0 

θk T k ( ̃  L ) X (6)

Here, θ is a filter coefficient matrix. T k ( X ) is a Chebyshev

polynomial sequence with recursive form, i.e. T 0 (X ) = 1 , T 1 (X ) =
X, T k (X ) = 2 XT k −1 (X ) − T k −2 (X ) . ˜ L is rescaled through 

˜ L = 

2 

λL 
max 

L −
I N . λ

L 
max is the largest eigenvalue of the graph Laplacian L . In this

definition, Defferrard et al. [24] used the normalized Laplacian

matrix, i.e. L = I N − D 

− 1 
2 AD 

− 1 
2 , D ii = 

∑ 

j A i j . The adjacency matrix

A is a matrix that represent the adjacent relationships between

the samples. I N represents the identity matrix. Defferrard et al.

[24] used the K -order network neighborhood on each convolution

layer. 

To build a linear model, Kipf et al. [27] only used the node’s

direct neighborhood on each iteration, i.e. K = 1 . Finally, they

proposed an efficient layer-wise definition, i.e. 

H̄ 

(L +1) = σ
(˜ D 

− 1 
2 ̃  A ̃

 D 

− 1 
2 H̄ 

(L ) W̄ 

(L ) 
)

(7)

Here, H̄ 

(L +1) is the sample feature matrix of each layer,

H̄ 

(0) = X . W̄ 

(L ) is trainable parameters matrix of each layer.

Kipf et al. [27] used the nonlinear activation function RELU , i.e.

f (x ) = max (0 , x ) . ˜ A = A + I N represents the sample’s adjacency

relationships including self-connections. ˜ D ii = 

∑ 

j ̃
 A i j . On each

aggregation iteration process, each sample can get the sample

structure information with the node’s direct neighborhood. Each

convolution is the fusion process of the structure information and

feature information. 

3. Motivation 

Inspired by the spectral graph convolutions, we introduce a

novel definition by combining the hypergraph p -Laplacian and
he spectral convolutions on graphs, i.e. spectral hypergraph p -

aplacian convolutions. Moreover, we get a different layer-wise ag-

regate rule by optimizing the one-order polynomial of spectral

ypergraph p -Laplacian convolutions. Specifically, the definition of

pectral hypergraph p -Laplacian convolutions is showed first. The

ne-order approximation of hypergraph p -Laplacian convolutions is

iven then. In this part, we explain the motivation of HpLapGCN

odel and introduce the derivation and optimization process of

ayer-wise aggregate rule. 

.1. Spectral hypergraph p -Laplacian convolutions 

Because of the poor null space of the Laplacian matrix [36,52] ,

.e. the manifold structure information of Laplacian is not rich,

nd then the extracted sample features of GCN are not represen-

ative. To get the richer sample features, we use the hypergraph

 -Laplacian matrix to preserve the manifold structure of the data.

hen, we apply the hypergraph p -Laplacian to spectral graph con-

olutions. Finally, we can get different spectral convolutions on the

raph, i.e. spectral hypergraph p -Laplacian convolutions. 

 θ (HL p ) � X = 

k ∑ 

k =0 

θk T k 
(˜ HL p 

)
X (8)

Here, ˜ HL p = 

2 
λmax 

HL p − I N . λmax denotes the largest eigenvalue

n the hypergraph p -Laplacian. In addition, T 0 ( ̃  HL p ) = I N , T 1 ( ̃  HL p ) =˜ L p , T k ( ̃
 HL p ) = 2 ̃  HL p T k −1 ( ̃

 HL p ) − T k −2 ( ̃
 HL p ) . In this paper, we

onstruct the HL p using the method described in [38] . 

.2. One-order approximation of hypergraph p -Laplacian convolutions

To build a linear model and reduce the calculation of the model,

e also use the one-order approximation of spectral hypergraph p -

aplacian convolutions, i.e. K = 1 . Thus, the above formula can be

implified, which is named HpLapGCN-1, i.e. 

 θ (HL p ) � X = θ0 X + θ1 

(
2 

λmax 
HL p − I N 

)
X (9)

It has two filter parameters θ0 and θ1 . The two different filter

arameters can be used on each convolution layer. Specially, we

onstraint the filter parameters to further reduce model’s convo-

ution operations and avoid the overfitting problem. Thus we can

et an optimal formula, which is named HpLapGCN, i.e. layer-wise

ggregate rule. 

 = g θ (HL p ) � X = θ
(

2 

λ
HL p − I N 

)
X (10)
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Fig. 2. Framework of the HpLapGCN model for semi-supervised classification. 
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Here, X is a matrix that represents the original data and θ ∈
 

C ×F . 2 
λmax 

HL p − I N is a symmetric matrix, which is the structure

nformation of samples. Z is the output of each convolution layer,

hich represents the node’s transformed sample features. 

The above formula can also be expressed as the following

xpression, i.e. 

¯
 

(L +1) = σ
[ (

2 

λmax 
HL p − I N 

)
H̄ 

(L ) W̄ 

(L ) 
] 

(11) 

. Hypergraph p -Laplacian graph convolutional networks 

In this part, we propose the hypergraph p -Laplacian graph con-

olutional networks (HpLapGCN) based on the new layer-wise ag-

regate rule. Specifically, we detailed describe the framework of a

wo-layer HpLapGCN. Fig. 2 shows the framework of a two-layer

pLapGCN for semi-supervised classification. 

.1. The first convolution layer of HpLapGCN 

In this paper, we use a two-layer HpLapGCN to demonstrate the

erformance of the model. Firstly, we need to construct the struc-

ure information of the samples, i.e. ̃  B = 

2 
λmax 

HL p − I N . Then, we can

et the first convolution layer of HpLapGCN, i.e. 

¯
 

(1) = RELU 

(˜ B ̄H 

(0) W̄ 

(0) 
)

(12) 

W̄ 

(0) are the weight parameters in the first layer. H̄ 

(1) is the

utput matrix in the first convolution layer. In the first layer, it can

xtract the first layer’s sample features by fusing the hypergraph

 -Laplacian structure information and original feature information.

.2. The second convolution layer of HpLapGCN 

The second convolution layer has a similar process. We take

he output of last layer as the second layer’s input. Then, the

xpression of the second layer’s network is as follows, i.e. 

¯
 

(2) = ̃

 B ̄H 

(1) W̄ 

(1) (13) 

W̄ 

(1) are the second layer’s weight parameters. H̄ 

(2) is the

utput of the final layer. In this layer, the structure information is

mbedded in the first layer’s sample features. 
.3. The classification layer of HpLapGCN 

After two convolutional layers, we put the final sample features

nto the classifier. Currently, Softmax is a commonly used classi-

er in deep learning. The Softmax classifier generalizes Logistic re-

ression to multi-class classification. The Softmax function can be

efined as 

f (Z j ) = 

e Z j ∑ n 
i =1 e 

Z i 
(14) 

It can convert the sample features of each class to the probabil-

ty that belong to each class by the Softmax function. Z is the final

xtracted sample features, i.e. H 

(2) . Moreover, we use cross entropy

oss function to update training parameters. 

 = −
∑ 

k 

y k log Z k (15) 

Here, y k represents the true label information. Z K is the output

f the Softmax function. During the training process of HpLapGCN,

ur proposed model will stop training model until the cross en-

ropy loss value C of validation set are stable. In addition, we only

se a part of true label information y k during this process. The

odel can get the best parameters by reducing the value of the

oss function. 

. Experiments 

In this section, we utilize extensive public datasets including

iteseer [53] and Cora [54] to test our proposed HpLapGCN for

emi-supervised classification. In the first place, we give a brief

escription of the Citeseer and Cora datasets. In the next place,

e introduce the parameters setting in the experiment. Finally, we

how the experiment results of HpLapGCN. 

.1. Experiment datasets 

The Citeseer database [53] contains 3327 scientific books. All

cientific publications are composed of 3703 different words,

hich express the existence or absence of a corresponding word

hrough one or zero. The total dataset is divided into six categories,

uch as Agents, AI, DB, IR, ML and HCI. All books contain 4732

itation relationships. 
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Fig. 3. Classification accuracy for all class of Citeseer database. 
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Fig. 4. Classification accuracy for all class of Cora database. 

Table 1 

Comparison of the different algorithms. 

Method Citeseer (120) Cora(140) 

ManiReg 60.1 59.5 

SemiEmb 59.6 59 

Chebyshev( K = 2 ) 53.6 49.8 

Chebyshev( K = 3 ) 53.7 50.5 

MLP 46.5 55.1 

HpLapGCN 62.5 59.8 

n  

r

 

a  

d  

o  

c  

t

 

C  

p  

p  

r

 

H  

s  

b  

s  

p  

f  

H

 

w  

i  

s  

[  

R  

h  
The Cora dataset [54] consists of totally 2708 publica-

tions, which are collected from seven classes including case-

based, genetic-algorithms, neural-networks, probabilistic-methods,

reinforcement-learning, rule-learning and theory. Each publication

has 1433 different words. The dataset is divided into 5429 citation

links. 

5.2. Parameters setting 

In the process of the experiment, we select 500 samples to

form validation set, 10 0 0 samples as testing set and the remaining

samples are training set. Moreover, the validation set and testing

set are all labeled data. In the training set, we random choose a

certain percentage samples including 20%, 30%, 40%, 50%, 60% as

labeled data, the rest training set as unlabeled data. 

The maximum model training iteration numbers of HpLapGCN

up to 200 by using the Adam [55] optimization method with a

learning ration of 0.01. We will stop updating model parameters if

the cross entropy loss value of validation set remain unchanged for

consecutive ten times. To increase the generalization ability of our

proposed model, we use the L2 regularization with the coefficient

of 5 × 10 −4 and Xavier [56] weight initialization method. Other pa-

rameters are as follows: Citeseer and Cora: 0.5 (dropout rate) and

32 (hidden neurons). 

5.3. Experiment results 

In this section, we compare the proposed HpLapGCN model

with the GCN and pLapGCN, In addition, the pLapGCN is our

previous works. In this work, we proposed a p-Laplacian graph

convolutional networks (pLapGCN) for citation network classifica-

tion by only utilizing the p -Laplacian to express the local structure

information of simple graph structured data, not a hypergraph

structured data. In each figure, the x -axis represents the label rate

of training data. The y -axis is the total classification accuracy of

each database in Figs. 3 and 4 . Fig. 5 shows the classification accu-

racy of Citeseer dataset on each category including Agents, AI, DB,

IR, ML and HCI. For Cora dataset, the classification accuracy results

of three models on each class (case-based, genetic-algorithms,
eural-networks, probabilistic-methods, reinforcement-learning,

ule-learning and theory) are shown in Fig. 6 . 

As shown in Fig. 3 , we can see that, the HpLapGCN with p = 2.2

chieves the best performance compared to other models. In ad-

ition, with the label rate growing up, the classification accuracy

f models also are on the increase. Fig. 5 reveals that under most

ircumstances, our proposed model outperforms other methods in

he performance of each class. 

Fig. 4 illustrates the classification accuracy of all categories in

ora database. From Fig. 4 , we can observe that the HpLapGCN

erforms better than GCN and pLapGCN when p = 1.7. For the most

art, we can find that our proposed method also obtains higher

ecognition results from Fig. 6 . 

From the experiment results of Figs. 3 and 4 , it suggests that

pLapGCN can extract the richer data features to increase the clas-

ification accuracy because it fuses the hypergraph p -Laplacian-

ased structure information, i,e, hypergraph p -Laplacian has the

uperiority to express the manifold structure of data compare with

 -Laplacian and Laplacian. In addition, it also proves that the ef-

ectiveness of optimization method that our proposed, i.e. from

pLapGCN-1 to HpLapGCN. 

To show the effectiveness of our proposed HpLapGCN model,

e further compare HpLapGCN with other semi-supervised learn-

ng algorithms including manifold regularization (ManiReg) [57] ,

emi-supervised embedding (SemiEmb) [58] , Chebyshev ( K = 2 )

24] , Chebyshev ( K = 3 ) [24] , multi-layer perceptron (MLP) [27] .

eport numbers represent the mean classification accuracy of one

undred runs randomly in percent. From Table 1 , we can see that
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Fig. 5. Classification accuracy for each class of Citeseer database, including Agents, AI, DB, IR, ML, HCI. Each subfigure corresponds on single class. 



172 S. Fu, W. Liu and Y. Zhou et al. / Neurocomputing 362 (2019) 166–174 

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

20

25

30

35

40

45

50

55

60

65

70
Case-based

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

30

35

40

45

50

55

60

65
Genetic-algorithms

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

75

76

77

78

79

80

81

82

83

84

85

86
Neural-networks

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

78

80

82

84

86

88

90

92

Probabilistic-methods

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

45

50

55

60

65

70

75
Reinforcement-learning

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

45

48

51

54

57

60

63

66

69

Rule-learning

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Label Rate(%)
10 20 30 40 50 60 70

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

10

15

20

25

30

35

40

45

50
Theory

GCN
pLapGCN
HpLapGCN-1(p=1.7)
HpLapGCN(p=1.7)

Fig. 6. Classification accuracy for each class of Cora database, including Theory, Case-based, Genetic-algorithms, Neural-networks, Probabilistic-methods, Reinforcement- 

learning, Rule-learning. Each subfigure corresponds on single class. 
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pLapGCN achieves the better classification performance. Those

xperiment results also demonstrate that hypergraph p -Laplacian

an better express the space manifold structure of the data. 

. Conclusion 

In the past few years, many ML methods have been success-

ul applied to the feature extraction of the complex space struc-

ured data. However, how to preserve the manifold structure of

ata and then extract the abundant local structure information is

 vital problem. To exactly express the geometry structure of data,

n this paper, we exploit the hypergraph p -Laplacian matrix to ex-

ress the space manifold structure of the data. Then we propose

 new expression method of structure information by optimizing

he hypergraph p -Laplacian-based spectral graph convolutions. Fi-

ally, we propose the HpLapGCN model based on the optimal one-

rder polynomial in the hypergraph p -Laplacian. Hypergraph full

onsiders the many pairwise relationships of data, thus HpLapGCN

odel can learn richer data features by integrating the feature in-

ormation with the hypergraph p -Laplacian-based structure infor-

ation. Extensive experimental results demonstrate the proposed

pLapGCN gets a higher classification performance. 
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